

1.1 Square Roots

1.1.1 Rationalizing The Denominator

Changing the denominator of a fraction from an i^{-r} anion number to a rational number is called rationalizing the denominator of the fraction. ationdizing the denominator does not change the value of the original fraction. To rationalize the nominator, we multiply the numerator and denominator of the fraction by a suitable factor. Fo. example, if the fraction is in the form $\frac{\sqrt{a}}{\sqrt{b}}$, we multiply both the numerator and the dent inator by $\sqrt{\mathrm{b}}$

So, $\frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{a}}{\sqrt{b}} \cdot \frac{\sqrt{b}}{\sqrt{b}}=\frac{\sqrt{a \cdot b}}{\sqrt{b \cdot b}}=\frac{\sqrt{a b}}{b}$, Note, nat \sqrt{a} and $\frac{\sqrt{a b}}{b}$ have the same value: they are equivalent fractions.

Look at some more examples:

- $\frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{3}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{3} \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}}=\frac{\sqrt{6}}{\sqrt{4} \cdot 2}=\frac{\sqrt{6}}{2}$
- $\frac{3}{\sqrt{3}}=\frac{3}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{3 \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}}, \frac{3 v}{3}=\sqrt{3}$, and
- $\frac{3 \sqrt{5}}{2 \sqrt{2}}=\frac{3 \sqrt{5}}{2 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{3 \cdot \sqrt{2}}{2 \cdot \sqrt{2 \cdot 2}}=\frac{2 \cdot \sqrt{10}}{2 \cdot 2}=\frac{3 \sqrt{10}}{4}$

An expression with e actly terms is called a binomial expression. Two binomial expressions whose first terms are eq lat last terms are opposite are called conjugates, ie. $a+b$ and $a-b$ are conjugates.
If $a \geq 0$ and $b \geq 0$, train the binomials $x \sqrt{a}+y \sqrt{b}$ and $x \sqrt{a}-y \sqrt{b}$ are conjugates. We can use conjugates to rationalize denominators that contain radical expressions. For example, let us rationalize $\frac{1}{\sqrt{3}+\sqrt{2}}, \sqrt{3}-\sqrt{2}$ is the conjugate of $\sqrt{3}+\sqrt{2}$ Therefore, we multiply the numerator and the denominator by $\sqrt{3}-\sqrt{2}$ to rationalize the denominator

$$
\frac{1}{\sqrt{3}+\sqrt{2}} \cdot \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}=\frac{1 \cdot(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2}) \cdot(\sqrt{3}-\sqrt{2})}=\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3})^{2}-(\sqrt{2})^{2}}=\frac{\sqrt{3}-\sqrt{2}}{3-2}=\frac{\sqrt{3}-\sqrt{2}}{1}=\sqrt{3}-\sqrt{2}
$$

1.1.2 Examples

- Example 1.1 Rationalize the denominators.
- $\frac{\sqrt{5}}{3-2 \sqrt{2}}$
- $\frac{\sqrt{3}-\sqrt{2}}{2 \sqrt{2}-1}$
- $\frac{\sqrt{6}+\sqrt{2}}{1-\sqrt{3}}$
- $\frac{\sqrt{6}+\sqrt{2}}{1-\sqrt{3}}$

- Example 1.2 Rationalize the denominator and simplify

- Example 1.3 (MATHCOUNTS) If ${ }^{1} \leq a \leq 10$ and $1 \leq b \leq 36$, for how many ordered pairs of integers (a, b) is $\sqrt{a+\sqrt{b}}$ an integer?
- Example 1.4 (MATHC TNTS) Let $p \ominus q=\sqrt{p^{2}-q^{2}}$, and let $p \oplus q=\sqrt{p^{2}+q^{2}}$. What is the value of $(3 \oplus 4) \oplus(20 \vee-4)$?

- Example 1.5 When the letters of the alphabet are assigned their integer values $(A=1, B=$ $2, C=3, \ldots, Z=26)$ the word-product for JULY is the product of the letter-values for each of the letters in JULY. When the square root of JULY's word-product is put into its simplest radical form of a \sqrt{b}, where b has no perfect-square factors greater than 1 , what is the value of b ?

