

1.1 Let's Not Solve Polynomials

Theorem 1.1.1 — Vieta's Formuals. Let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + x + a_0,$$

and let the roots of f(x) be $r_1, r_2, ..., r_n$. Then we have

$$s_{1} = r_{1} + r_{2} + r_{3} + \cdots + r_{n} = -\frac{a_{n-1}}{a_{n}},$$

$$s_{2} = r_{1}r_{2} + r_{1}r_{3} + \cdots + r_{n-2}r_{n-1} = \frac{a_{n-2}}{a_{n}},$$

$$s_{3} = r_{1}r_{2}r_{3} + r_{1}r_{2}r_{4} + \cdots + r_{n-2}r_{n-1}r_{n} = -\frac{a_{n-3}}{a_{n}},$$

$$\vdots$$

$$s_{n} = r_{1}r_{2}r_{3} \cdots r_{n} = (-1)^{n}\frac{a_{0}}{a_{n}},$$

where each s_k is the symmetre sum of the roots of f(x) taken k at a time. We call these equations Vieta's Formulas.

1.1.1 Examples

- **Example 1.1** The polynomial $P(x) = x^3 + ax^2 + bx + c$ has the property that the mean of its zeros, the product of its zeros, and the sum of its coefficients are all equal. If the *y*-intercept of the graph of y = P(x) is 2, what is b?
- **Example 1.2** Let a, b, c be the roots of $x^3 9x^2 + 11x 1 = 0$, and let $s = \sqrt{a} + \sqrt{b} \sqrt{c}$. Find $s^4 18s^2 8s$.
- **Example 1.3** Suppose that the roots of $x^3 + 3x^2 + 4x 11 = 0$ are x, b, and x, c, and that the roots of $x^3 + rx^2 + sx + t = 0$ are x + b, x + c, and x + c. (AIME)
 - 1. Find *r*
 - 2. Find *t*.
- **Example 1.4** Three of the roots of $x^4 + ax^2 + bx + c = 0$ are 2, -3, and 5. Find the value of a + b + c (HMMT)
- **Example 1.5** Let α, β, γ be the ross of $x^3 3x^2 + 1$ (Misha Lavrov)
 - 1. Find a polynomial whose cots are $\alpha + 3, \beta + 3$, and $\gamma + 3$
 - 2. Find a polynomia, whose roots are $\frac{1}{\alpha+3}, \frac{1}{\beta+3}$, and $\frac{1}{\gamma+3}$
 - 3. Compute $\frac{1}{\alpha+3} + \frac{1}{\beta+3} + \frac{1}{\gamma+3}$
 - 4. Find a polynomial whose roots are α^2 , β^2 , and γ^2