1. Algebra

1.1 Let's Not Solve Polynomials

Theorem 1.1.1 - Vieta's Formuals. Let

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\cdots+r+u_{0},
$$

and let the roots of $f(x)$ be $r_{1}, r_{2}, \ldots, r_{n}$. The we afve

$$
\begin{gathered}
s_{1}=\quad r_{1}+r_{2}+3+r_{n}=-\frac{a_{n-1}}{a_{n}} \\
s_{2}=r_{1} r_{2}+r_{1} r_{3}+\cdots+r_{n-2} r_{n-1}= \\
s_{3}=r_{1} r_{2} r_{3}-r r_{2}+\cdots+r_{n-2} r_{n-1} r_{n}= \\
\vdots \\
s_{n}=
\end{gathered}
$$

where each s_{k} is the symr eut sum of the roots of $f(x)$ taken k at a time. We call these equations Vieta's Formulas.

1.1.1 Examples

- Example 1.1 The polynomial $P(x)=x^{3}+a x^{2}+b x+c$ has the property that the mean of its zeros, the product of its zeros, and the sum of its coefficients are all equal. If the y-intercept of the graph of $y=P(x)$ is 2 , what is b ?
- Example 1.2 Let a, b, c be the roots of $x^{3}-9 x^{2}+11 x-1=0$, and let $s=\sqrt{c}+\sqrt{b}, \sqrt{c}$. Find $s^{4}-18 s^{2}-8 s$.
- Example 1.3 Suppose that the roots of $x^{3}+3 x^{2}+4 x-11=0$ are c, b, id c, and that the roots of $x^{3}+r x^{2}+s x+t=0$ are $a+b, b+c$, and $c+a$. (AIME)

1. Find r
2. Find t.

- Example 1.4 Three of the roots of $x^{4}+a x+c=0$ are $2,-3$, and 5. Find the value of $a+b+c$ (HMMT)
- Example 1.5 Let α, β, γ be the r (s s $x^{3}-3 x^{2}+1$ (Misha Lavrov)

1. Find a polynomial whos ots are $\alpha+3, \beta+3$, and $\gamma+3$
2. Find a polynon a whose roots are $\frac{1}{\alpha+3}, \frac{1}{\beta+3}$, and $\frac{1}{\gamma+3}$

3. Compute $\frac{1}{\alpha+3}+\frac{1}{\beta+3}+\frac{1}{\gamma+3}$
4. Find a polynomial whose roots are α^{2}, β^{2}, and γ^{2}
